
NAG C Library Function Document

nag_pde_parab_1d_keller (d03pec)

1 Purpose

nag_pde_parab_1d_keller (d03pec) integrates a system of linear or nonlinear, first-order, time-dependent
partial differential equations (PDEs) in one space variable. The spatial discretisation is performed using
the Keller box scheme and the method of lines is employed to reduce the PDEs to a system of ordinary
differential equations (ODEs). The resulting system is solved using a Backward Differentiation Formula
(BDF) method.

2 Specification

void nag_pde_parab_1d_keller (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ut[], const double ux[], double res[], Integer *ires,
Nag_Comm *comm),

void (*bndary)(Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], double res[], Integer *ires,
Nag_Comm *comm),

double u[], Integer npts, const double x[], Integer nleft, double acc,
double rsave[], Integer lrsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_keller (d03pec) integrates the system of first-order PDEs

Giðx; t; U; Ux; UtÞ ¼ 0; i ¼ 1; 2; . . . ; npde: ð1Þ
In particular the functions Gi must have the general form

Gi ¼
Xnpde

j¼1

Pi;j

@Uj

@t
þQi; i ¼ 1; 2; . . . ;npde; a � x � b; t � t0; ð2Þ

where Pi;j and Qi depend on x, t, U , Ux and the vector U is the set of solution values

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; Unpdeðx; tÞ�T; ð3Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j and Qi must not depend on @U
@t .

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The mesh should be chosen

in accordance with the expected behaviour of the solution.

The PDE system which is defined by the functions Gi must be specified in a function pdedef supplied by
the user.

The initial values of the functions Uðx; tÞ must be given at t ¼ t0. For a first-order system of PDEs, only
one boundary condition is required for each PDE component Ui. The npde boundary conditions are
separated into na at the left-hand boundary x ¼ a, and nb at the right-hand boundary x ¼ b, such that
na þ nb ¼ npde. The position of the boundary condition for each component should be chosen with care;
the general rule is that if the characteristic direction of Ui at the left-hand boundary (say) points into the
interior of the solution domain, then the boundary condition for Ui should be specified at the left-hand
boundary. Incorrect positioning of boundary conditions generally results in initialisation or integration
difficulties in the underlying time integration functions.
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The boundary conditions have the form:

GL
i ðx; t; U; UtÞ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ; na ð4Þ

at the left-hand boundary, and

GR
i ðx; t; U; UtÞ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ; nb ð5Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme (Keller (1970)). If the problem involves derivative (Neumann)
boundary conditions then it is generally possible to restate such boundary conditions in terms of

permissible variables. Also note that GL
i and GR

i must be linear with respect to time derivatives, so that
the boundary conditions have the general form

Xnpde

j¼1

EL
i;j

@Uj

@t
þ SL

i ¼ 0; i ¼ 1; 2; . . . ; na ð6Þ

at the left-hand boundary, and

Xnpde

j¼1

ER
i;j

@Uj

@t
þ SR

i ¼ 0; i ¼ 1; 2; . . . ; nb ð7Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, S

L
i , and SR

i depend on x, t and U only.

The boundary conditions must be specified in a function bndary provided by the user.

The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j and Qi must not depend on any time derivatives;

(iii) The evaluation of the function Gi is done at the mid-points of the mesh intervals by calling the
function pdedef for each mid-point in turn. Any discontinuities in the function must therefore be at
one or more of the mesh points x1; x2; . . . ; xnpts;

(iv) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the

problem.

In this method of lines approach the Keller box scheme (Keller (1970)) is applied to each PDE in the space
variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point. In total there
are npde� npts ODEs in the time direction. This system is then integrated forwards in time using a BDF
method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software

Systems (ed J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial

Differential Equations (ed J Bramble) 2 327–350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99
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5 Parameters

1: npde – Integer Input

On entry: the number of PDEs in the system to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

Constraint: ts < tout.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef Function

pdedef must compute the functions Gi which define the system of PDEs. pdedef is called
approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_keller
(d03pec).

Its specification is:

void pdedef (Integer npde, double t, double x, const double u[], const double ut[],
const double ux[], double res[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Uiðx; tÞ, for i ¼ 1; 2; . . . ;npde.

5: ut½npde� – const double Input

On entry: ut½i� 1� contains the value of the component
@Uiðx;tÞ

@t , for i ¼ 1; 2; . . . ; npde.

6: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component
@Uiðx;tÞ

@x , for i ¼ 1; 2; . . . ; npde.

7: res½npde� – double Output

On exit: res½i� 1� must contain the ith component of G, for i ¼ 1; 2; . . . ; npde, where G
is defined as

Gi ¼
Xnpde

j¼1

Pi;j

@Uj

@t
; ð8Þ

i.e., only terms depending explicitly on time derivatives, or
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Gi ¼
Xnpde

j¼1

Pi;j

@Uj

@t
þQi; ð9Þ

i.e., all terms in equation (2).

The definition of G is determined by the input value of ires.

8: ires – Integer * Input/Output

On entry: the form of Gi that must be returned in the array res. If ires ¼ �1, then
equation (8) above must be used. If ires ¼ 1, then equation (9) above must be used.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions, as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_keller (d03pec) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

9: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

5: bndary Function

bndary must compute the functions GL
i and GR

i which define the boundary conditions as in
equations (4) and (5).

Its specification is:

void bndary (Integer npde, double t, Integer ibnd, Integer nobc, const double u[],
const double ut[], double res[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ibnd – Integer Input

On entry: ibnd determines the position of the boundary conditions. If ibnd ¼ 0, then
bndary must compute the left-hand boundary condition at x ¼ a. Any other value of
ibnd indicates that bndary must compute the right-hand boundary condition at x ¼ b.

4: nobc – Integer Input

On entry: nobc specifies the number of boundary conditions at the boundary specified by
ibnd.

5: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Uiðx; tÞ at the boundary specified
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by ibnd, for i ¼ 1; 2; . . . ; npde.

6: ut½npde� – const double Input

On entry: ut½i� 1� contains the value of the component
@Uiðx;tÞ

@t at the boundary specified

by ibnd, for i ¼ 1; 2; . . . ; npde.

7: res½nobc� – double Output

On exit: res½i� 1� must contain the ith component of GL or GR, depending on the value

of ibnd, for i ¼ 1; 2; . . . ; nobc, where GL is defined as

GL
i ¼

Xnpde
j¼1 E

L
i;j

@Uj

@t
; ð10Þ

i.e., only terms depending explicitly on time derivatives, or

GL
i ¼

Xnpde
j¼1 E

L
i;j

@Uj

@t
þ SL

i ; ð11Þ

i.e., all terms in equation (6), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of ires.

8: ires – Integer * Input/Output

On entry: the form GL
i (or GR

i ) that must be returned in the array res. If ires ¼ �1, then
equation (10) above must be used. If ires ¼ 1, then equation (11) above must be used.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions, as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_keller (d03pec) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

9: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

6: u½npde� npts� – double Input/Output

Note: where Uði; jÞ appears in this document it refers to the array element u½npde� ðj� 1Þ þ i� 1�.
We recommend using a #define to make the same definition in your calling program.

On entry: the initial values of Uðx; tÞ at t ¼ ts and the mesh points x½j� 1�, for j ¼ 1; 2; . . . ; npts.

On exit: Uði; jÞ will contain the computed solution at t ¼ ts.

7: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: npts � 3.
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8: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0] must specify the left-hand boundary, a, and
x½npts� 1] must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

9: nleft – Integer Input

On entry: the number na of boundary conditions at the left-hand mesh point x½0].
Constraint: 0 � nleft � npde.

10: acc – double Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
Eði; jÞ is the estimated error for Ui at the jth mesh point, the error test is:

jEði; jÞj ¼ acc� ð1:0þ jUði; jÞjÞ:
Constraint: acc > 0:0.

11: rsave½lrsave� – double Input/Output

On entry: if ind ¼ 0, rsave need not be set. If ind ¼ 1 then it must be unchanged from the
previous call to the function.

On exit: contains information about the iteration required for subsequent calls.

12: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_keller (d03pec) is called.

Constraint: lrsave � ð4� npdeþ nleftþ 14Þ � npde� nptsþ ð3� npdeþ 21Þ � npdeþ
7� nptsþ 54.

13: isave½lisave� – Integer Input/Output

On entry: if ind ¼ 0, isave need not be set. If ind ¼ 1 then it must be unchanged from the previous
call to the function.

On exit: contains information about the iteration required for subsequent calls. In particular:

isave½0] contains the number of steps taken in time.

isave½1] contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation
of the functions in the boundary conditions.

isave½2] contains the number of Jacobian evaluations performed by the time integrator.

isave½3] contains the order of the last backward differentiation formula method used.

isave½4] contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU decomposition
of the Jacobian matrix.

14: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_keller (d03pec) is called.

Constraint: lisave � npde� nptsþ 24.

15: itask – Integer Input

On entry: specifies the task to be performed by the ODE integrator. The permitted values of itask
and their meanings are described below:
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itask ¼ 1

normal computation of output values u at t ¼ tout.

itask ¼ 2

take one step and return.

itask ¼ 3

stop at the first internal integration point at or beyond t ¼ tout.

Constraint: 1 � itask � 3.

16: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_keller (d03pec) and the
underlying ODE solver as follows:

If itrace � �1, no output is generated.

If itrace ¼ 0, only warning messages from the PDE solver are printed.

If itrace ¼ 1, then output from the underlying ODE solver is printed. This output contains details
of Jacobian entries, the nonlinear iteration and the time integration during the computation of the
ODE system.

If itrace ¼ 2, then the output from the underlying ODE solver is similar to that produced when
itrace ¼ 1, except that the advisory messages are given in greater detail.

If itrace � 3, then the output from the underlying ODE solver is similar to that produced when
itrace ¼ 2, except that the advisory messages are given in greater detail.

Users are advised to set itrace ¼ 0.

17: outfile – char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

18: ind – Integer * Input/Output

On entry: ind must be set to 0 or 1.

ind ¼ 0

starts or restarts the integration in time.

ind ¼ 1

continues the integration after an earlier exit from the function. In this case, only the
parameters tout and fail should be reset between calls to nag_pde_parab_1d_keller (d03pec).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

19: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

20: saved – Nag_D03_Save * Input/Output

Note: saved is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: if the current call to nag_pde_parab_1d_keller (d03pec) follows a previous call to a
Chapter d03 function then saved must contain the unchanged value output from that previous call.

On exit: data to be passed unchanged to any subsequent call to a Chapter d03 function.
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21: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

ires set to an invalid value in call to pdedef or bndary.

On entry, nleft ¼ hvaluei.
Constraint: nleft � 0.

On entry, npde ¼ hvaluei.
Constraint: npde � 1.

On entry, npts ¼ hvaluei.
Constraint: npts � 3.

On entry, itask is not equal to 1, 2, or 3: itask ¼ hvaluei.
On entry, ind is not equal to 0 or 1: ind ¼ hvaluei.

NE_INT_2

On entry, lrsave is too small: lrsave ¼ hvaluei. Minimum possible dimension: hvaluei.
On entry, lisave is too small: lisave ¼ hvaluei. Minimum possible dimension: hvaluei.
On entry, nleft > npde: nleft ¼ hvaluei, npde ¼ hvaluei.

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
acc ¼ hvaluei.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could
be due to user setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

acc was too small to start integration: acc ¼ hvaluei.

NE_FAILED_STEP

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ hvaluei.
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Underlying ODE solver cannot make further progress from the point ts with the supplied value of
acc. ts ¼ hvaluei, acc ¼ hvaluei.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i ¼ hvaluei, x½i� 1� ¼ hvaluei j ¼ hvaluei,
x½j� 1� ¼ hvaluei.
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NE_REAL

On entry, acc ¼ hvaluei.
Constraint: acc > 0:0.

NE_REAL_2

On entry, tout� ts is too small: tout ¼ hvaluei, ts ¼ hvaluei.
On entry, tout � ts: tout ¼ hvaluei, ts ¼ hvaluei.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef or bndary. Integration is
successful as far as ts: ts ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file hvaluei for writing.

NE_NOT_CLOSE_FILE

Cannot close file hvaluei.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The function controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying
the accuracy parameter, acc.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example problem in nag_pde_parab_1d_keller_ode (d03pkc)).
In general, a second-order problem can be solved with slightly greater accuracy using the Keller box
scheme instead of a finite-difference scheme (nag_pde_parab_1d_fd (d03pcc) or
nag_pde_parab_1d_fd_ode (d03phc) for example), but at the expense of increased CPU time due to the
larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be
unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation
Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This
type of problem requires a discretisation scheme with upwind weighting (nag_pde_parab_1d_cd (d03pfc)
for example), or the addition of a second-order artificial dissipation term.
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The time taken depends on the complexity of the system and on the accuracy requested.

9 Example

This example is the simple first-order system

@U1

@t þ @U1

@x þ @U2

@x ¼ 0;

@U2

@t þ 4 @U1

@x þ @U2

@x ¼ 0;

for t 2 ½0; 1� and x 2 ½0; 1�.
The initial conditions are

U1ðx; 0Þ ¼ expðxÞ; U2ðx; 0Þ ¼ sinðxÞ;
and the Dirichlet boundary conditions for U1 at x ¼ 0 and U2 at x ¼ 1 are given by the exact solution:

U1ðx; tÞ ¼ 1
2
expðxþ tÞ þ expðx� 3tÞf g þ 1

4
sinðx� 3tÞ � sinðxþ tÞf g;

U2ðx; tÞ ¼ expðx� 3tÞ � expðxþ tÞ þ 1
2
sinðxþ tÞ þ sinðx� 3tÞf g:

9.1 Program Text

/* nag_pde_parab_1d_keller (d03pec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

static void pdedef(Integer, double, double, const double[],
const double[], const double[], double[],
Integer *, Nag_Comm *);

static void bndary(Integer, double, Integer, Integer,
const double[], const double[], double[],
Integer *, Nag_Comm *);

static void exact(double, Integer, Integer, double *, double *);

static void uinit(Integer, Integer, double *, double *);

#define U(I,J) u[npde*((J)-1)+(I)-1]
#define EU(I,J) eu[npde*((J)-1)+(I)-1]

int main(void)
{

const Integer npde=2, npts=41, nleft=1, neqn=npde*npts,
lisave=neqn+24, nwkres=npde*(npts+21+3*npde)+7*npts+4,
lrsave=11*neqn+(4*npde+nleft+2)*neqn+50+nwkres;

Integer exit_status, i, ind, it, itask, itrace;
double acc, tout, ts;
double *eu=0, *rsave=0, *u=0, *x=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */
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if ( !(eu = NAG_ALLOC(npde*npts, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)) )

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

itrace = 0;
acc = 1e-6;

INIT_FAIL(fail);
exit_status = 0;

Vprintf("d03pec Example Program Results\n\n");
Vprintf(" Accuracy requirement =%10.3e", acc);
Vprintf(" Number of points = %3ld\n\n", npts);

/* Set spatial-mesh points */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

Vprintf(" x ");
Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n\n",

x[4], x[12], x[20], x[28], x[36]);

ind = 0;
itask = 1;

uinit(npde, npts, x, u);

/* Loop over output value of t */

ts = 0.0;
tout = 0.0;
for (it = 0; it < 5; ++it)

{
tout = 0.2*(it+1);
d03pec(npde, &ts, tout, pdedef, bndary, u, npts, x, nleft,

acc, rsave, lrsave, isave, lisave, itask, itrace,
0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03pec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Check against the exact solution */

exact(tout, npde, npts, x, eu);

Vprintf(" t = %5.2f\n", ts);
Vprintf(" Approx u1");
Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",

U(1,5), U(1,13), U(1,21), U(1,29), U(1,37));

Vprintf(" Exact u1");
Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",

EU(1,5), EU(1,13), EU(1,21), EU(1,29), EU(1,37));

Vprintf(" Approx u2");
Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",

U(2,5), U(2,13), U(2,21), U(2,29), U(2,37));

Vprintf(" Exact u2");
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Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n\n",
EU(2,5), EU(2,13), EU(2,21), EU(2,29), EU(2,37));

}
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (eu) NAG_FREE(eu);
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (x) NAG_FREE(x);
if (isave) NAG_FREE(isave);

return exit_status;
}

static void pdedef(Integer npde, double t, double x, const double u[],
const double udot[], const double dudx[], double res[],
Integer *ires, Nag_Comm *comm)

{
if (*ires == -1)

{
res[0] = udot[0];
res[1] = udot[1];

} else {
res[0] = udot[0] + dudx[0] + dudx[1];
res[1] = udot[1] + 4.0*dudx[0] + dudx[1];

}
return;

}

static void bndary(Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double udot[], double res[],
Integer *ires, Nag_Comm *comm)

{
if (ibnd == 0)

{
if (*ires == -1)

{
res[0] = 0.0;

} else {
res[0] = u[0] - 0.5*(exp(t) + exp(-3.0*t))

- 0.25*(sin(-3.0*t) - sin(t));
}

} else {
if (*ires == -1) {

res[0] = 0.0;
} else {

res[0] = u[1] - exp(1.0 - 3.0*t) + exp(t + 1.0)
- 0.5*(sin(1.0 - 3.0*t) + sin(t + 1.0));

}
}

return;
}

static void uinit(Integer npde, Integer npts, double *x, double *u)
{

/* Routine for PDE initial values */

Integer i;

for (i = 1; i <= npts; ++i) {
U(1, i) = exp(x[i-1]);
U(2, i) = sin(x[i-1]);

}
return;

}
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static void exact(double t, Integer npde, Integer npts, double *x,
double *u)

{

/* Exact solution (for comparison purposes) */

Integer i;

for (i = 1; i <= npts; ++i)
{

U(1, i) = 0.5*(exp(x[i-1] + t) + exp(x[i-1] - 3.0*t)) +
0.25*(sin(x[i-1] - 3.0*t) - sin(x[i-1] + t));

U(2, i) = exp(x[i-1] - 3.0*t) - exp(x[i-1] + t) +
0.5*(sin(x[i-1] - 3.0*t) + sin(x[i-1] + t));

}
return;

}

9.2 Program Data

None.

9.3 Program Results

d03pec Example Program Results

Accuracy requirement = 1.000e-06 Number of points = 41

x 0.1000 0.3000 0.5000 0.7000 0.9000

t = 0.20
Approx u1 0.7845 1.0010 1.2733 1.6115 2.0281
Exact u1 0.7845 1.0010 1.2733 1.6115 2.0281
Approx u2 -0.8352 -0.8159 -0.8367 -0.9128 -1.0609
Exact u2 -0.8353 -0.8160 -0.8367 -0.9129 -1.0609

t = 0.40
Approx u1 0.6481 0.8533 1.1212 1.4627 1.8903
Exact u1 0.6481 0.8533 1.1212 1.4627 1.8903
Approx u2 -1.5216 -1.6767 -1.8934 -2.1917 -2.5944
Exact u2 -1.5217 -1.6767 -1.8935 -2.1917 -2.5945

t = 0.60
Approx u1 0.6892 0.8961 1.1747 1.5374 1.9989
Exact u1 0.6892 0.8962 1.1747 1.5374 1.9989
Approx u2 -2.0047 -2.3434 -2.7677 -3.3002 -3.9680
Exact u2 -2.0048 -2.3436 -2.7678 -3.3003 -3.9680

t = 0.80
Approx u1 0.8977 1.1247 1.4320 1.8349 2.3514
Exact u1 0.8977 1.1247 1.4320 1.8349 2.3512
Approx u2 -2.3403 -2.8675 -3.5110 -4.2960 -5.2536
Exact u2 -2.3405 -2.8677 -3.5111 -4.2961 -5.2537

t = 1.00
Approx u1 1.2470 1.5206 1.8828 2.3528 2.9519
Exact u1 1.2470 1.5205 1.8829 2.3528 2.9518
Approx u2 -2.6229 -3.3338 -4.1998 -5.2505 -6.5218
Exact u2 -2.6232 -3.3340 -4.2001 -5.2507 -6.5219

Number of integration steps in time = 149
Number of function evaluations = 399
Number of Jacobian evaluations = 13
Number of iterations = 323
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